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Abstract

These notes give some information about an aviation-capable AHRS algorithm for GPS
and IMU sensor fusion, which was employed in my hobby project described in Ref.[13],
which I made public under the GPL license.

1 Introduction

In recent years, MEMS accelerometers and rotation sensors as well as magnetic field sensors
became widely available as cheap integrated circuits and are employed in smartphones, tablets
etc. In 2010, Madgwick published an algorithm for “sensor fusion” which computes orientation
from the raw sensor data, correcting for measurement noise and drift and provided also an open
source implementation[1]. In 2017, Admiraal et al. [2] reformulated this algorithm in a more
clear manner, basically as an integration of a differential equation for time evolution of the
orientation quaternion, corrected by gradient descent algorithm minimizing the deviation of the
orientation with respect to the gravitational and magnetic reference vectors. Later, Wilson et
al.[3] improved the algorithm by taking the second reference to be a vector product of gravitation
with magnetic field, so that the two references are orthogonal and the respective gradient descent
steps do not interfere. This is a similar idea to the improvement from the steepest descent to
conjugate gradient function minimization algorithm and also solves the problem of non-zero and
varying z-component of the magnetic field, which would otherwise possibly spoil the pitch and
roll angle computation.

However, the aforementioned papers were not concerned with application to aviation, so
they omitted the fact that in a non-inertial reference system the accelerometer does not measure
gravity, but the vector sum of gravity with non-inertial forces. Similarly, Android interface
to IMU sensors provides “gravity vector” as a low-passed accelerometer readout. Therefore
any “attitude indicator” or “artificial horizon” smartphone app, which relies on the orientation
from the standard library is doomed to fail during turning flight in a plane (or when driving a
car at a roundabout). In this note I combined the transformation from Earth reference frame
(approximated to be inertial) to the non-inertial moving frame of the sensor to compute the
“pure” gravity vector to be used as reference for the AHRS algorithm. This transformation is of
course well known in aviation [4], but maybe less well known in other application areas of IMU
sensors. I also provide a GPL open source implementation of the algorithm in C++ and open
hardware design of an experimental attitude/airspeed/altitude indicator [13].
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2 Algorithm and its implementation

2.1 AHRS algorithm summary

Rotations in three-dimensional space are conveniently described by normalized quaternions,
which form a group isomorphic to SU(2) and homomorphic to the group of proper rotations SO(3)
(q and−q yield the same rotation matrix) [6, 7] The vectors subject to rotation are represented as
quaternions with zero real component and the rotation of a vector x by a normalized quaternion
q is performed as

x′ = q−1xq = q∗xq (1)

The (non-inertial) plane reference frame is centered in the plane’s center of mass and oriented
according the the usual convention in aviation [4], with x-axis from back to front of the plane,
y-axis from left to right wing, and z axis pointing “down” from the pilot’s point of view. The
Earth reference frame is approximated to be inertial and is defined so that a plane sitting at the
earth with its tail-to-cockpit line towards north has its axes aligned with the Earth frame. When
considering rotational orientation, one can assume this frame translated at each time instant to
become centered in the center of mass of the plane, so that the two frames are related by rotation
only. In accord with [2], we define the orientation quaternion so that

rplane = q∗rearthq (2)

where r is position vector in quaternion representation. When rotating with angular velocity ω

measured in the plane’s system, the time development of the orientation is

q̇(t) =
1

2
q(t)ω(t) (3)

If the angular velocity sensor had ideal accuracy, no noise and drift, it would be enough to
integrate this equation numerically to keep track of the orientation

q(t+∆t) = q(t) + q̇(t)∆t (4)

However, unlike the ring laser gyros, the MEMS sensors are far from ideal and even when not
moving, they give nonzero readout of ω. Part of it is a constant bias and can be calibrated out,
but part of it depends on temperature, time and acceleration and cannot be simply subtracted.
To prevent the errors due to this nonideal sensor behavior to accumulate over time, the algorithm
performs corrections of the orientation to minimize the difference between a reference vector
known in the earth-system rotated to the plane-system by the current orientation quaternion
q(t) and its counterpart measured in the plane-system

F (q) = f(q)T · f(q)
!
= min (5)

f(q) = q∗vref,earthq − vref,plane

This minimization can be achieved iteratively using a gradient descent

qn+1 = qn − β′
∇qF (q) (6)

where β′ > 0 is a step size parameter. Since the minimization need not be completed at one
time instant, as the orientation changes anyway, it is more practical to join the time propagation
(3,4) and minimization (6) into a single orientation update equation, which for Nref reference
vectors yields

q(t+∆t) = q(t) + ∆t





1

2
q(t)ω(t)−

Nref
∑

i=1

βi∇qFi(q(t))



 (7)



Subsequently q(t + ∆t) is normalized at each step, to prevent numerical deviation from a nor-
malized quaternion which represents a rotation.

In order to determine the orientation uniquely, at least two reference vectors are needed.
One of them is the normalized gravity vector vref1,earth ≡ gearth = (0, 0,−1). The negative
sign corresponds to gravity force in +z direction being locally equivalent to acceleration in −z
direction, which corresponds to what is measured. For determining the corresponding gplane

see the next section. The second reference is provided by the normalized magnetic field vector
mearth = (mx, 0,mz). However, since this vector should only determine the azimuth (yaw) and
fluctuations in its mz component could actually spoil pitch and roll values, it is better to take
as a second reference its vector product with gravity vref2,earth = gearth × mearth, as suggested
in [3]. In principle, one could derive the orientation from the two references only, not taking
the gyroscope into account at all, but this would be unreliable during turning maneuvers due to
neglect of dω(t)/dt and other approximations below. A combination of the integration of ω(t)
and gradient correcting steps is thus needed, as given by (7) possibly with a dynamic scaling of
the gradient step parameters βi, giving more weight to the gradient term of gravity reference in
straight flight and less weight when aerobatic maneuvers are detected (large ω(t), large pitch
and roll angles).

In order to compute the orientation update (7) numerically, one has to determine the respec-
tive gradients of the target functions (5)

∇qF (q) = 2f(q)T · ∇qf(q) = 2(∇qf(q))
T
· f(q) (8)

The rotation by a normalized quaternion q can equivalently be expressed by a rotation matrix
[9]

q∗vq = M (q)v (9)

where

M (q) =







(q20 + q21 − q22 − q23) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) (q20 − q21 + q22 − q23) 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) (q20 − q21 − q22 + q23)






(10)

Then
f(q) = M (q)vref,earth − vref,plane (11)

and
∇qf(q) = ∇qM (q) · vref,earth (12)

where the quaternion-gradient of the rotation matrix ∇qM(q) can be considered as a matrix of
quaternions or a quaternion with matrix-valued components, where the latter is more convenient
in the templated C++ implementation. Taking derivatives of (10) one easily gets

∂M (q)

∂q0
=







q0 q3 −q2
−q3 q0 q1
q2 −q1 q0





 (13)

∂M (q)

∂q1
=







q1 q2 q3
q2 −q1 q0
q3 −q0 −q1





 (14)

∂M (q)

∂q2
=







−q2 q1 −q0
q1 q2 q3
q0 q3 −q2






(15)

∂M (q)

∂q3
=







−q3 q0 q1
−q01 −q3 q2
q1 q2 q3






(16)



(17)

Finally, the quaternion gradient of the minimized function is

∇qF (q) = 2f(q)T · ∇qM (q) · vref,earth (18)

= 2[M (q)vref,earth − vref,plane]
T
· ∇qM(q) · vref,earth

In the articles [2, 3] the authors developed explicit formulas for the special cases of sparse
reference vectors (z-only and y-only components, respectively) to save floating operations. As it
turned out that on STM32F373 at 72MHz I can achieve high enough update frequency with a
general (and more elegant) implementation, I did not implement the special cases.

2.2 Coordinate frames and acceleration in the non-inertial system

The papers [1, 2, 3] did not consider application of their algorithm in aviation and thus supposed
that the accelerometer measures, except for accelerations of very short duration, only the gravity.
This is not the case during flight, where long-time accelerations in a flight along a curved path
occur and cannot be neglected. In order to account for the non-inertial forces during turning
flight, it is instructive to consider an auxiliary non-inertial frame which only rotates with respect
to the (translated) earth frame and in which the plane is fixed at a given instant. In other
words, the distance of the center of this system from the plane will be the turning radius given
as reciprocal of the plane’s trajectory at a given point of its trajectory. Then the whole speed
of the plane with respect to earth system vi comes from the rotation of this auxiliary system

vi = ω × rturning (19)

where the angular speed ω is identical to the one measured in the plane’s coordinate system,
which is just translated with respect to the auxiliary system, the speed of the plane with respect
to the auxiliary system vr vanishes by definition, and rturning is the position of the plane in the
auxiliary system. Then one can employ the formula for non-inertial acceleration in a rotating
frame [5]

ar = ai − 2ω × vr − ω × (ω × rturning)−
dω

dt
× rturning (20)

Considering vr = 0, using (19) and neglecting dω/dt one obtains accelerations in the rotating
system

ar = ai − ω × vi (21)

where the inertial accelerations ai combines gravity and linear acceleration alinear of the plane.
Notice, however, that the accelerometer readout gives ameasured = −ar since it aims to provide
the accelerations of the non-inertial system, which are in opposite direction to the apparent non-
inertial forces experienced by objects moving with the system. The measured acceleration thus
adds the centripetal acceleration

ameasured = g + alinear + ω × vi (22)

in accordance with the result in [4]. Gravity is locally indistinguishable from acceleration in
opposite direction, so the the gravity reference vector corresponding to non-moving accelerometer
readout is gearth = (0, 0,−g) in the Earth frame. In the plane’s coordinate system, it can thus
be recovered as

gplane = ameasured − alinear + ω × vi (23)

where all vectors are expressed in the plane’s reference system. The quantities ameasured and
ω are directly measured in plane’s system, while alinear and vi are derived from time change
of the GPS position and have to be transformed from the earth reference frame to the current
orientation of the plane.



3 Results

Reference [13] gives an open source implementation of the described algorithm and an open
hardware experimental device, presently at “alpha-stage” of development. In a later version of
these notes I plan to give results of the performance of the algorithm/device during a flight in
a light sport plane and compare to results of previous works by Ma et al. [11] and Johansen et
al. [12].
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