

October 2018 DT0059 Rev 3 1/8

 www.st.com

DT0059
Design tip

Ellipsoid or sphere fitting for sensor calibration

 By Andrea Vitali

Main components

LSM303AGR Ultra compact high-performance e-compass: ultra-low-
power 3D accelerometer and 3D magnetometer

LSM6DS3 iNEMO inertial module: 3D accelerometer and 3D
gyroscope

Purpose and benefits

This design tip explains how to compute offsets, gains, and cross-axis gains for a 3-axis

sensor by performing a sphere (ellipsoid) fitting. The technique is typically used to calibrate

and compensate magnetometers, but it can also be used with other sensors, such as

accelerometers.

Benefits:

 Added functionality with respect to calibration provided by the MotionFX library which
only provides offsets for the Magnetometer.

 Short and essential implementation, which enables easy customization and
enhancement by the end-user (osxMotionFX is available only in binary format, not as
source code)

 Easy to use on every microcontroller (osxMotionFX can only be run on the STM32 and
only when the proper license has been issued by Open.MEMS license server).

Algorithm description

Measurements are taken on a number of positions (N) and combined to find the unknowns

(offsets, gains and cross-axis gains).

For 6-tumble calibration, positioning the sensor accurately is required. However, for the

ellipsoid fitting described here, there is no need to know the true stimulus of the sensor, as

the only requirement is that the modulus of the true stimulus be constant (square root of

sum of squares of X, Y, and Z).

 For the case of the magnetometer: in order to measure only the earth magnetic

field, any other spurious (and often time varying) magnetic anomalies must be

absent; the modulus of the true stimulus is then the modulus of the earth magnetic

field

October 2018 DT0059 Rev 3 2/8

 www.st.com

 For the case of the accelerometer: in order to measure only the gravity, the sensor

must not be subject to any other acceleration; the modulus of the true stimulus is

then the modulus of the gravity

In the most general case, the following equation has 9 unknowns,

v = [a, b, c, d, e, f, g, h, i]T with the data points being on a rotated ellipsoid. If the ellipsoid

is not rotated, the axis will be aligned with X, Y and Z, where the corresponding equation

has only 6 unknowns v = [a, b, c, g, h, i]T. If the axes are all the same length, then it is a

sphere, and the corresponding equation has only 4 unknowns v = [a+b+c, g, h, i]T. The

general equation is the following:

a X2 + b Y2 + c Z2 + d 2XY + e 2XZ + f 2YZ + g 2X + h 2Y + i 2Z = 1

The set of N data points is used to build a data matrix D where the data points must not be

co-planar:

 Rotated ellipsoid: line of D = [X2, Y2, Z2, 2XY,2XZ, 2YZ, 2X, 2Y, 2Z], where D is

[Nx9]. At least 9 data points are needed to compute offsets, gains and cross-axis

gains

 Non-rotated ellipsoid: line of D = [X2, Y2, Z2, 2X, 2Y, 2Z], where D is [Nx6], At least

6 data points are needed to compute offsets and gains

 Sphere: line of D = [X2+Y2+Z2, 2X, 2Y, 2Z], where D is [Nx4]. At least 4 data points

are needed to compute offsets

Rotated ellipsoid fitting

Now, the least-square error approximation can be computed for the unknowns in v by using

the pseudo-inverse of the non-square matrix. First, both sides are multiplied by the

transpose DT. Second, both sides are multiplied by the inverse of the square matrix D DT.

There can be 9, 6 or 4 unknowns, depending on the aforementioned constraints. For the

most general case:

D[Nx9] v[9x1] = 1 [Nx1] → DT[9xN] D[Nx9] v[9x1] = DT[9xN] 1[Nx1] →

(DT D)[9x9] v[9x1] = (DT 1)[9x1] → v[9x1] = inv(DT D)[9x9] (DT 1)[9x1]

Next, the auxiliary matrix A4[4x4] and A3[3x3], and the auxiliary vector vghi[3x1] are built

using the unknowns v[9x1]:

 v = [a, b, c, d, e, f, g, h, i]T, vghi = [g h i]T

 A4 = [a d e g; d b f h; e f c i; g h i -1], A3 = [a d e; d b f; e f c]

Offsets o = (ox, oy, oz) can be computed as follows:

 A3[3x3] o[3x1] = -vghi[3x1] → o[3x1] = -inv(A3)[3x3] vghi[3x1]

Once the offsets are known, another auxiliary matrix B4[4x4] is computed, which

represents the ellipsoid translated into the origin:

October 2018 DT0059 Rev 3 3/8

 www.st.com

 T = [1 0 0 0; 0 1 0 0; 0 0 1 0; ox oy oz 1] → B4[4x4] = T[4x4] A[4x4] TT[4x4],

B4[4x4] = [b11 b12 b13 b14; b21 b22 b23 b24; b31 b32 b33 b34; b41 b42 b43 b44],

B3[3x3] = [b11 b12 b13; b21 b22 b23; b31 b32 b33] / -b44

Gains and cross-axis gains can be computed from eigenvalues and eigenvectors

respectively of B3[3x3].

 Ellipsoid radii are the square root of the inverse of the 3 eigenvalues; these are the

axis gains g = [gx, gy, gz]T

 Ellipsoid rotation matrix R[3x3] is obtained by juxtaposition of the 3 eigenvectors;

gains and cross-axis gains are obtained by multiplying the 3x3 matrix where the

diagonal contains the gains

Compensation of offsets, gains and cross-axis gains to map the data point p = [x, y, z]T on

the unit sphere can then be done in 3 steps:

1. Subtraction of the offsets, p’ = p - o = [x-ox, y-oy, z-oz]T = [x’, y’, z’]T

2. Multiplication by the inverse of the rotation matrix, p” = p’ inv(R) = [x”, y”, z”]T

3. Division by the gains, p’”= [x”/gx, y”/gy, z”/gz]T = [x’”, y’”, z’”]T

Non-rotated ellipsoid fitting

In this case, the data matrix D[Nx6] has only 6 columns and there are only 6 unknowns to

be computed v = [a, b, c, g, h, i]:

D[Nx6] v[6x1] = 1 [Nx1] → DT[6xN] D[Nx6] v[6x1] = DT[6xN] 1[Nx1] →

(DT D)[6x6] v[6x1] = (DT 1)[6x1] → v[6x1] = inv(DT D)[6x6] (DT 1)[6x1]

Offsets o = (oX, oY, oZ) can be computed as follows:

o = [g/a, h/b, i/c]T

Gains g = [gx, gy, gz]T can be computed as follows:

 G = 1 + g2/a + h2/b + i2/c → g = [sqrt(a/G) sqrt(b/G) sqrt(c/G)]T

Sphere fitting

In this case, the data matrix D[Nx4] has only 4 columns and there are only 4 unknowns to

be computed v = [a+b+c, g, h, i]T = [a”, g, h, i]T:

D[Nx4] v[4x1] = 1 [Nx1] → DT[4xN] D[Nx4] v[4x1] = DT[4xN] 1[Nx1] →

(DT D)[4x4] v[4x1] = (DT 1)[4x1] → v[4x1] = inv(DT D)[4x4] (DT 1)[4x1]

October 2018 DT0059 Rev 3 4/8

 www.st.com

Offsets o = (oX, oY, oZ) can be computed as follows:

o = [g/a”, h/a”, i/a”]T

Gains g = [gx, gy, gz]T can be computed as follows:

 G = 1 + g2/a” + h2/a” + i2/a” → g = [sqrt(a”/G) sqrt(a”/G) sqrt(a”/G)]T

Notes

Hints for a compact real-time implementation on a microcontroller:

 Only the product DT[MxN] D[NxM] needs to be maintained in memory, this is a MxM

matrix, M=9, 6 or 4; worst case is that 9x9=81 elements are to be maintained in

memory

 Only the product DT[MxN] 1[Nx1] needs to be maintained in memory, this is a Mx1

vector, M=9, 6, or 4; worst case is that 9 elements are to be maintained in memory

 Gaussian elimination can be implemented to compute the inverse of the

aforementioned MxM matrix when enough data points (at least M) have been

collected

 For the case of the rotated ellipsoid fitting, eigenvalues and eigenvectors of a 3x3

matrix can be computed by using closed formulas

 For the case of a rotated ellipsoid when there is no or little rotation, the system

does not easily converge to the correct solution; this is especially true if data points

are affected by noise. If little or no rotation is expected (matrix R has small values

out of the diagonal) and/or if data points are affected by a significant noise, the

following alternate equation system is suggested:

D[Nx9] = [X2+Y2-2Z2, X2-2Y2+Z2, 4XY,2XZ, 2YZ, 2X, 2Y, 2Z, 1]

E[Nx1] = [X2+Y2+Z2]

D[Nx9] u[9x1] = E[Nx1] → DT[9xN] D[Nx9] u[9x1] = DT[9xN] E[Nx1] →

(DT D)[9x9] u[9x1] = (DT 1)[9x1] → u[9x1] = inv(DT D)[9x9] (DT E)[9x1]

 S’[3x3] = [3, 1, 1; 3, 1, -2; 3, -2, 1]

 S[10x10] = [S’[3x3], 0[3x7]; 0[7x3] eye[7x7]] then set s44 = 2

 v’ = S[10x10] [-1/3; u[9x1]] = [a’, b’, c’, d’, e’, f’, g’, h’, i’, j’]T

 v = - [a’, b’, c’, d’, e’, f’, g’, h’, i']T / j’ = [a, b, c, d, e, f, g, h, i]T

 Then, the computation proceeds as before for the case of a rotated ellipsoid.

October 2018 DT0059 Rev 3 5/8

 www.st.com

Rotation matrix refinement for optimal data compensation

As already mentioned, there are 3 steps to compensate for offsets, gains and cross-axis

gains and map the data point on the unit sphere:

 Translate the center of the ellipsoid to the origin (0,0,0) by subtracting the offsets

 De-rotate the ellipsoid by multiplying by the inverse of the rotation matrix (the

inverse is simply the transpose)

 Scale the de-rotated ellipsoid by multiplying by the inverse of the gains.

After the de-rotation, it can be seen that one could flip any axis and the ellipsoid would still

map to the unit sphere: X can be exchanged with -X, and the same can be done with Y and

Z. This means that the ellipsoid can be de-rotated so that a given axis is aligned with any of

the reference axes in the positive or negative direction: X, -X, Y, -Y, Z or -Z.

One may want to impose the constraint that the de-rotation is the least possible: a given

axis should be aligned with the nearest reference axis and no flipping should happen. This

means that the rotation matrix has the largest coefficients along the diagonal and those

coefficients are positive. This can be obtained by swapping and changing the sign of

selected columns (or rows) of the rotation matrix (or its inverse which is the transpose).

See below the reference code for this refinement step.

MatLab code for ellipsoid/sphere fitting

Reference implementation.

function [ofs,gain,rotM]=ellipsoid_fit(XYZ,varargin)

% Fit an (non)rotated ellipsoid or sphere to a set of xyz data points

% XYZ: N(rows) x 3(cols), matrix of N data points (x,y,z)

% optional flag f, default to 0 (fitting of rotated ellipsoid)

x=XYZ(:,1); y=XYZ(:,2); z=XYZ(:,3); if nargin>1, f=varargin{1}; else f=0; end;

if f==0, D=[x.*x, y.*y, z.*z, 2*x.*y,2*x.*z,2*y.*z, 2*x,2*y,2*z]; % any axes (rotated ellipsoid)

elseif f==1, D=[x.*x, y.*y, z.*z, 2*x,2*y,2*z]; % XYZ axes (non-rotated ellipsoid)

elseif f==2, D=[x.*x+y.*y, z.*z, 2*x,2*y,2*z]; % and radius x=y

elseif f==3, D=[x.*x+z.*z, y.*y, 2*x,2*y,2*z]; % and radius x=z

elseif f==4, D=[y.*y+z.*z, x.*x, 2*x,2*y,2*z]; % and radius y=z

elseif f==5, D=[x.*x+y.*y+z.*z, 2*x,2*y,2*z]; % and radius x=y=z (sphere)

end;

v = (D'*D)\(D'*ones(length(x),1)); % least square fitting

if f==0, % rotated ellipsoid

 A = [v(1) v(4) v(5) v(7); v(4) v(2) v(6) v(8); v(5) v(6) v(3) v(9); v(7) v(8) v(9) -1];

 ofs=-A(1:3,1:3)\[v(7);v(8);v(9)]; % offset is center of ellipsoid

 Tmtx=eye(4); Tmtx(4,1:3)=ofs'; AT=Tmtx*A*Tmtx'; % ellipsoid translated to (0,0,0)

 [rotM ev]=eig(AT(1:3,1:3)/-AT(4,4)); % eigenvectors (rotation) and eigenvalues (gain)

 gain=sqrt(1./diag(ev)); % gain is radius of the ellipsoid

else % non-rotated ellipsoid

 if f==1, v = [v(1) v(2) v(3) 0 0 0 v(4) v(5) v(6)];

 elseif f==2, v = [v(1) v(1) v(2) 0 0 0 v(3) v(4) v(5)];

 elseif f==3, v = [v(1) v(2) v(1) 0 0 0 v(3) v(4) v(5)];

 elseif f==4, v = [v(2) v(1) v(1) 0 0 0 v(3) v(4) v(5)];

 elseif f==5, v = [v(1) v(1) v(1) 0 0 0 v(2) v(3) v(4)]; % sphere

 end;

 ofs=-(v(1:3).\v(7:9))'; % offset is center of ellipsoid

 rotM=eye(3); % eigenvectors (rotation), identity = no rotation

 g=1+(v(7)^2/v(1)+v(8)^2/v(2)+v(9)^2/v(3));

 gain=(sqrt(g./v(1:3)))'; % find radii of the ellipsoid (scale)

end;

October 2018 DT0059 Rev 3 6/8

 www.st.com

Alternative implementation for near spherical data with little or no rotation

function [ofs,gain,rotM]=ellipsoid_fit(XYZ)

% Fit a rotated ellipsoid to a set of xyz data points

% XYZ: N(rows) x 3(cols), matrix of N data points (x,y,z)

x=XYZ(:,1); y=XYZ(:,2); z=XYZ(:,3);

x2=x.*x; y2=y.*y; z2=z.*z;

D = [x2+y2-2*z2, x2-2*y2+z2, 4*x.*y, 2*x.*z, 2*y.*z, 2*x, 2*y, 2*z, ones(length(x),1)];

R = x2+y2+z2;

b = (D'*D)\(D'*R); % least square solution

mtxref = [3 1 1 0 0 0 0 0 0 0; 3 1 -2 0 0 0 0 0 0 0; 3 -2 1 0 0 0 0 0 0 0; ...

 0 0 0 2 0 0 0 0 0 0; 0 0 0 0 1 0 0 0 0 0; 0 0 0 0 0 1 0 0 0 0; ...

 0 0 0 0 0 0 1 0 0 0; 0 0 0 0 0 0 0 1 0 0; 0 0 0 0 0 0 0 0 1 0; ...

 0 0 0 0 0 0 0 0 0 1];

v = mtxref*[-1/3; b]; nn=v(10); v = -v(1:9);

A = [v(1) v(4) v(5) v(7); v(4) v(2) v(6) v(8); v(5) v(6) v(3) v(9); v(7) v(8) v(9) -nn];

ofs=-A(1:3,1:3)\[v(7);v(8);v(9)]; % offset is center of ellipsoid

Tmtx=eye(4); Tmtx(4,1:3)=ofs'; AT=Tmtx*A*Tmtx'; % ellipsoid translated to (0,0,0)

[rotM ev]=eig(AT(1:3,1:3)/-AT(4,4)); % eigenvectors (rotation) and eigenvalues (gain)

gain=sqrt(1./diag(ev)); % gain is radius of the ellipsoid

 Rotation matrix refinement

function [gain,rotM]=refine_3D_fit(gain,rotM)

 % largest element should be on diagonal

 m=0; rm=0; cm=0;

 for r=1:3, for c=1:3,

 if abs(rotM(r,c))>m, m=abs(rotM(r,c)); rm=r; cm=c; end; % record max

 end; end;

 if rm~=cm, % swap cols if not on diagonal

 t=rotM(:,cm); rotM(:,cm)=rotM(:,rm); rotM(:,rm)=t;

 t=gain(cm); gain(cm)=gain(rm); gain(rm)=t;

 end; % largest now in the diagonal, in row rm

 % do the same on remaining 2x2 matrix

 switch rm, case 1, i=[2 3]; case 2, i=[1 3]; case 3, i=[1 2]; end;

 m=0; rm=0; cm=0;

 for r=1:2, for c=1:2,

 if abs(rotM(i(r),i(c)))>m, m=abs(rotM(i(r),i(c))); rm=i(r); cm=i(c); end;

 end; end;

 if rm~=cm, % swap cols if not on diagonal

 t=rotM(:,cm); rotM(:,cm)=rotM(:,rm); rotM(:,rm)=t;

 t=gain(cm); gain(cm)=gain(rm); gain(rm)=t;

 end;

 % neg cols to make it positive along diagonal

 if rotM(1,1)<0, rotM(:,1)=-rotM(:,1); end;

 if rotM(2,2)<0, rotM(:,2)=-rotM(:,2); end;

 if rotM(3,3)<0, rotM(:,3)=-rotM(:,3); end;

end

Test code and sample output

[ofs,gain,rotM]=ellipsoid_fit([X Y Z]);

[gain,rotM]=refine_3D_fit(gain,rotM); % optional refinement

XC=X-ofs(1); YC=Y-ofs(2); ZC=Z-ofs(3); % translate to (0,0,0)

XYZC=[XC,YC,ZC]*rotM; % rotate to XYZ axes

refr = 500; % reference radius

XC=XYZC(:,1)/gain(1)*refr;

YC=XYZC(:,2)/gain(2)*refr;

ZC=XYZC(:,3)/gain(3)*refr; % scale to sphere

figure;

subplot(2,2,1); hold on; plot(XC,YC,'ro'); plot(X,Y,'kx');

xlabel('X'); ylabel('Y'); axis equal; grid on;

subplot(2,2,2); hold on; plot(ZC,YC,'go'); plot(Z,Y,'kx');

xlabel('Z'); ylabel('Y'); axis equal; grid on;
subplot(2,2,3); hold on; plot(XC,ZC,'bo'); plot(X,Z,'kx');

xlabel('X'); ylabel('Z'); axis equal; grid on;

October 2018 DT0059 Rev 3 7/8

 www.st.com

Support material

Related design support material

BlueMicrosystem1, Bluetooth low energy and sensors software expansion for STM32Cube

Open.MEMS, MotionFX, Real-time motion-sensor data fusion software expansion for STM32Cube

Documentation

Application note, AN4508, Parameters and calibration of a low-g 3-axis accelerometer

Application note, AN4615, Fusion and compass calibration APIs for the STM32 Nucleo with

the X-NUCLEO-IKS01A1 sensors expansion board

Desing tip, DT0053, 6-point tumble sensor calibration

Revision history

Date Version Changes

09-Feb-2016 1 Initial release

26-Aug-2018 2 Updated equations, added Matlab code

29-Oct-2018 3 Added paragraph on rotation matrix refinement for optimal
data compensation

October 2018 DT0059 Rev 3 8/8

 www.st.com

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements,
modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should
obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms
and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for
application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST
for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this
document.

© 2018 STMicroelectronics – All rights reserved

