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DT0059  
Design tip 

Ellipsoid or sphere fitting for sensor calibration 

 By Andrea Vitali 

 

Main components 

LSM303AGR  Ultra compact high-performance e-compass: ultra-low-
power 3D accelerometer and 3D magnetometer 

LSM6DS3  iNEMO inertial module: 3D accelerometer and 3D 
gyroscope 

Purpose and benefits 

This design tip explains how to compute offsets, gains, and cross-axis gains for a 3-axis 

sensor by performing a sphere (ellipsoid) fitting. The technique is typically used to calibrate 

and compensate magnetometers, but it can also be used with other sensors, such as 

accelerometers. 

Benefits: 

 Added functionality with respect to calibration provided by the MotionFX library which 
only provides offsets for the Magnetometer. 

 Short and essential implementation, which enables easy customization and 
enhancement by the end-user (osxMotionFX is available only in binary format, not as 
source code) 

 Easy to use on every microcontroller (osxMotionFX can only be run on the STM32 and 
only when the proper license has been issued by Open.MEMS license server). 

Algorithm description 

Measurements are taken on a number of positions (N) and combined to find the unknowns 

(offsets, gains and cross-axis gains).  

For 6-tumble calibration, positioning the sensor accurately is required. However, for the 

ellipsoid fitting described here, there is no need to know the true stimulus of the sensor, as 

the only requirement is that the modulus of the true stimulus be constant (square root of 

sum of squares of X, Y, and Z). 

 For the case of the magnetometer: in order to measure only the earth magnetic 

field, any other spurious (and often time varying) magnetic anomalies must be 

absent; the modulus of the true stimulus is then the modulus of the earth magnetic 

field 
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 For the case of the accelerometer: in order to measure only the gravity, the sensor 

must not be subject to any other acceleration; the modulus of the true stimulus is 

then the modulus of the gravity 

In the most general case, the following equation has 9 unknowns,                                        

v = [ a, b, c, d, e, f, g, h, i ]T with the data points being on a rotated ellipsoid. If the ellipsoid 

is not rotated, the axis will be aligned with X, Y and Z, where the corresponding equation 

has only 6 unknowns v = [ a, b, c, g, h, i ]T. If the axes are all the same length, then it is a 

sphere, and the corresponding equation has only 4 unknowns v = [ a+b+c, g, h, i ]T. The 

general equation is the following: 

a X2 + b Y2 + c Z2 + d 2XY + e 2XZ + f 2YZ + g 2X + h 2Y + i 2Z = 1 

The set of N data points is used to build a data matrix D where the data points must not be 

co-planar: 

 Rotated ellipsoid: line of D = [X2, Y2, Z2, 2XY,2XZ, 2YZ, 2X, 2Y, 2Z], where D is 

[Nx9]. At least 9 data points are needed to compute offsets, gains and cross-axis 

gains 

 Non-rotated ellipsoid: line of D = [X2, Y2, Z2, 2X, 2Y, 2Z], where D is [Nx6], At least 

6 data points are needed to compute offsets and gains 

 Sphere: line of D = [X2+Y2+Z2, 2X, 2Y, 2Z], where D is [Nx4]. At least 4 data points 

are needed to compute offsets 

Rotated ellipsoid fitting 

Now, the least-square error approximation can be computed for the unknowns in v by using 

the pseudo-inverse of the non-square matrix. First, both sides are multiplied by the 

transpose DT. Second, both sides are multiplied by the inverse of the square matrix D DT. 

There can be 9, 6 or 4 unknowns, depending on the aforementioned constraints. For the 

most general case: 

D[Nx9] v[9x1] = 1 [Nx1] → DT[9xN] D[Nx9] v[9x1] = DT[9xN] 1[Nx1] → 

(DT D)[9x9] v[9x1] = (DT 1)[9x1] → v[9x1] = inv(DT D)[9x9] (DT 1)[9x1] 

Next, the auxiliary matrix A4[4x4] and A3[3x3], and the auxiliary vector vghi[3x1] are built 

using the unknowns v[9x1]: 

  v = [ a, b, c, d, e, f, g, h, i ]T,   vghi = [g h i]T 

 A4 = [ a d e g;   d b f h;   e f c i;   g h i -1 ],  A3 = [ a d e; d b f; e f c]  

Offsets o = (ox, oy, oz) can be computed as follows: 

 A3[3x3] o[3x1] = -vghi[3x1] → o[3x1] = -inv(A3)[3x3] vghi[3x1] 

Once the offsets are known, another auxiliary matrix B4[4x4] is computed, which 

represents the ellipsoid translated into the origin: 
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 T = [ 1 0 0 0;  0 1 0 0; 0 0 1 0; ox oy oz 1 ] → B4[4x4] = T[4x4] A[4x4] TT[4x4], 

  

B4[4x4] = [ b11 b12 b13 b14; b21 b22 b23 b24; b31 b32 b33 b34; b41 b42 b43 b44 ], 

B3[3x3] = [ b11 b12 b13; b21 b22 b23; b31 b32 b33 ] / -b44 

Gains and cross-axis gains can be computed from eigenvalues and eigenvectors 

respectively of B3[3x3]. 

 Ellipsoid radii are the square root of the inverse of the 3 eigenvalues; these are the 

axis gains g = [gx, gy, gz]T 

 Ellipsoid rotation matrix R[3x3] is obtained by juxtaposition of the 3 eigenvectors; 

gains and cross-axis gains are obtained by multiplying the 3x3 matrix where the 

diagonal contains the gains 

Compensation of offsets, gains and cross-axis gains to map the data point p = [x, y, z]T on 

the unit sphere can then be done in 3 steps: 

1. Subtraction of the offsets, p’ = p - o = [x-ox, y-oy, z-oz]T = [ x’, y’, z’ ]T 

2. Multiplication by the inverse of the rotation matrix, p” = p’ inv(R) = [ x”, y”, z” ]T 

3. Division by the gains, p’”= [ x”/gx, y”/gy, z”/gz ]T = [x’”, y’”, z’” ]T 

Non-rotated ellipsoid fitting 

In this case, the data matrix D[Nx6] has only 6 columns and there are only 6 unknowns to 

be computed v = [ a, b, c, g, h, i]: 

D[Nx6] v[6x1] = 1 [Nx1] → DT[6xN] D[Nx6] v[6x1] = DT[6xN] 1[Nx1] → 

(DT D)[6x6] v[6x1] = (DT 1)[6x1] → v[6x1] = inv(DT D)[6x6] (DT 1)[6x1] 

Offsets o = (oX, oY, oZ) can be computed as follows: 

o = [ g/a, h/b, i/c ]T 

Gains g = [ gx, gy, gz ]T can be computed as follows: 

 G = 1 + g2/a + h2/b + i2/c → g = [ sqrt(a/G) sqrt(b/G) sqrt(c/G) ]T 

Sphere fitting 

In this case, the data matrix D[Nx4] has only 4 columns and there are only 4 unknowns to 

be computed v = [a+b+c, g, h, i ]T = [ a”, g, h, i]T: 

D[Nx4] v[4x1] = 1 [Nx1] → DT[4xN] D[Nx4] v[4x1] = DT[4xN] 1[Nx1] → 

(DT D)[4x4] v[4x1] = (DT 1)[4x1] → v[4x1] = inv(DT D)[4x4] (DT 1)[4x1] 
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Offsets o = (oX, oY, oZ) can be computed as follows: 

o = [ g/a”, h/a”, i/a” ]T 

Gains g = [ gx, gy, gz ]T can be computed as follows: 

 G = 1 + g2/a” + h2/a” + i2/a” → g = [ sqrt(a”/G) sqrt(a”/G) sqrt(a”/G) ]T 

Notes 

Hints for a compact real-time implementation on a microcontroller:  

 Only the product DT[MxN] D[NxM] needs to be maintained in memory, this is a MxM 

matrix, M=9, 6 or 4; worst case is that 9x9=81 elements are to be maintained in 

memory 

 Only the product DT[MxN] 1[Nx1]  needs to be maintained in memory, this is a Mx1 

vector, M=9, 6, or 4; worst case is that 9 elements are to be maintained in memory 

 Gaussian elimination can be implemented to compute the inverse of the 

aforementioned MxM matrix when enough data points (at least M) have been 

collected 

 For the case of the rotated ellipsoid fitting, eigenvalues and eigenvectors of a 3x3 

matrix can be computed by using closed formulas 

 For the case of a rotated ellipsoid when there is no or little rotation, the system 

does not easily converge to the correct solution; this is especially true if data points 

are affected by noise.  If little or no rotation is expected (matrix R has small values 

out of the diagonal) and/or if data points are affected by a significant noise, the 

following alternate equation system is suggested: 

D[Nx9] = [ X2+Y2-2Z2, X2-2Y2+Z2, 4XY,2XZ, 2YZ, 2X, 2Y, 2Z, 1 ] 

E[Nx1] = [ X2+Y2+Z2 ] 

D[Nx9] u[9x1] = E[Nx1] → DT[9xN] D[Nx9] u[9x1] = DT[9xN] E[Nx1] → 

(DT D)[9x9] u[9x1] = (DT 1)[9x1] → u[9x1] = inv(DT D)[9x9] (DT E)[9x1] 

 S’[3x3] = [ 3, 1, 1; 3, 1, -2; 3, -2, 1 ] 

 S[10x10] = [ S’[3x3], 0[3x7]; 0[7x3] eye[7x7] ] then set s44 = 2  

 v’ = S[10x10] [ -1/3; u[9x1] ] = [ a’, b’, c’, d’, e’, f’, g’, h’, i’, j’ ]T 

 v = - [ a’, b’, c’, d’, e’, f’, g’, h’, i' ]T / j’ = [ a, b, c, d, e, f, g, h, i ]T 

 Then, the computation proceeds as before for the case of a rotated ellipsoid. 
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Rotation matrix refinement for optimal data compensation 

As already mentioned, there are 3 steps to compensate for offsets, gains and cross-axis 

gains and map the data point on the unit sphere: 

 Translate the center of the ellipsoid to the origin (0,0,0) by subtracting the offsets 

 De-rotate the ellipsoid by multiplying by the inverse of the rotation matrix (the 

inverse is simply the transpose) 

 Scale the de-rotated ellipsoid by multiplying by the inverse of the gains. 

After the de-rotation, it can be seen that one could flip any axis and the ellipsoid would still 

map to the unit sphere: X can be exchanged with -X, and the same can be done with Y and 

Z. This means that the ellipsoid can be de-rotated so that a given axis is aligned with any of 

the reference axes in the positive or negative direction: X, -X, Y, -Y, Z or -Z. 

One may want to impose the constraint that the de-rotation is the least possible: a given 

axis should be aligned with the nearest reference axis and no flipping should happen. This 

means that the rotation matrix has the largest coefficients along the diagonal and those 

coefficients are positive. This can be obtained by swapping and changing the sign of 

selected columns (or rows) of the rotation matrix (or its inverse which is the transpose). 

See below the reference code for this refinement step. 

MatLab code for ellipsoid/sphere fitting 

Reference implementation. 

function [ofs,gain,rotM]=ellipsoid_fit(XYZ,varargin) 

% Fit an (non)rotated ellipsoid or sphere to a set of xyz data points 

% XYZ: N(rows) x 3(cols), matrix of N data points (x,y,z) 

% optional flag f, default to 0 (fitting of rotated ellipsoid) 

x=XYZ(:,1); y=XYZ(:,2); z=XYZ(:,3); if nargin>1, f=varargin{1}; else f=0; end; 

if     f==0, D=[x.*x,  y.*y,  z.*z,  2*x.*y,2*x.*z,2*y.*z, 2*x,2*y,2*z]; % any axes (rotated ellipsoid) 

elseif f==1, D=[x.*x,  y.*y,  z.*z,                        2*x,2*y,2*z]; % XYZ axes (non-rotated ellipsoid) 

elseif f==2, D=[x.*x+y.*y,    z.*z,                        2*x,2*y,2*z]; %   and radius x=y 

elseif f==3, D=[x.*x+z.*z,    y.*y,                        2*x,2*y,2*z]; %   and radius x=z 

elseif f==4, D=[y.*y+z.*z,    x.*x,                        2*x,2*y,2*z]; %   and radius y=z 

elseif f==5, D=[x.*x+y.*y+z.*z,                            2*x,2*y,2*z]; %   and radius x=y=z (sphere) 

end; 

v = (D'*D)\(D'*ones(length(x),1)); % least square fitting  

if f==0, % rotated ellipsoid 

  A = [ v(1) v(4) v(5) v(7); v(4) v(2) v(6) v(8); v(5) v(6) v(3) v(9); v(7) v(8) v(9) -1 ]; 

  ofs=-A(1:3,1:3)\[v(7);v(8);v(9)]; % offset is center of ellipsoid 

  Tmtx=eye(4); Tmtx(4,1:3)=ofs'; AT=Tmtx*A*Tmtx'; % ellipsoid translated to (0,0,0) 

  [rotM ev]=eig(AT(1:3,1:3)/-AT(4,4)); % eigenvectors (rotation) and eigenvalues (gain) 

  gain=sqrt(1./diag(ev)); % gain is radius of the ellipsoid  

else % non-rotated ellipsoid 

  if     f==1, v = [ v(1) v(2) v(3) 0 0 0 v(4) v(5) v(6) ]; 

  elseif f==2, v = [ v(1) v(1) v(2) 0 0 0 v(3) v(4) v(5) ];  

  elseif f==3, v = [ v(1) v(2) v(1) 0 0 0 v(3) v(4) v(5) ];  

  elseif f==4, v = [ v(2) v(1) v(1) 0 0 0 v(3) v(4) v(5) ];  

  elseif f==5, v = [ v(1) v(1) v(1) 0 0 0 v(2) v(3) v(4) ]; % sphere 

  end; 

  ofs=-(v(1:3).\v(7:9))'; % offset is center of ellipsoid 

  rotM=eye(3); % eigenvectors (rotation), identity = no rotation 

  g=1+(v(7)^2/v(1)+v(8)^2/v(2)+v(9)^2/v(3)); 

  gain=(sqrt(g./v(1:3)))'; % find radii of the ellipsoid (scale) 

end; 
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Alternative implementation for near spherical data with little or no rotation 

function [ofs,gain,rotM]=ellipsoid_fit(XYZ) 

% Fit a rotated ellipsoid to a set of xyz data points 

% XYZ: N(rows) x 3(cols), matrix of N data points (x,y,z) 

x=XYZ(:,1); y=XYZ(:,2); z=XYZ(:,3);  

x2=x.*x; y2=y.*y; z2=z.*z; 

D = [x2+y2-2*z2, x2-2*y2+z2, 4*x.*y, 2*x.*z, 2*y.*z, 2*x, 2*y, 2*z, ones(length(x),1)]; 

R = x2+y2+z2; 

b = (D'*D)\(D'*R); % least square solution 

mtxref = [ 3  1  1   0  0  0   0  0  0  0; 3  1 -2   0  0  0   0  0  0  0; 3 -2  1   0  0  0   0  0  0  0; ... 

           0  0  0   2  0  0   0  0  0  0; 0  0  0   0  1  0   0  0  0  0; 0  0  0   0  0  1   0  0  0  0; ... 

           0  0  0   0  0  0   1  0  0  0; 0  0  0   0  0  0   0  1  0  0; 0  0  0   0  0  0   0  0  1  0; ... 

           0  0  0   0  0  0   0  0  0  1]; 

v = mtxref*[-1/3; b]; nn=v(10); v = -v(1:9); 

A = [ v(1) v(4) v(5) v(7); v(4) v(2) v(6) v(8); v(5) v(6) v(3) v(9); v(7) v(8) v(9) -nn ];  

ofs=-A(1:3,1:3)\[v(7);v(8);v(9)]; % offset is center of ellipsoid 

Tmtx=eye(4); Tmtx(4,1:3)=ofs'; AT=Tmtx*A*Tmtx'; % ellipsoid translated to (0,0,0) 

[rotM ev]=eig(AT(1:3,1:3)/-AT(4,4)); % eigenvectors (rotation) and eigenvalues (gain) 

gain=sqrt(1./diag(ev)); % gain is radius of the ellipsoid 

 Rotation matrix refinement 

function [gain,rotM]=refine_3D_fit(gain,rotM) 

  % largest element should be on diagonal 

  m=0; rm=0; cm=0; 

  for r=1:3, for c=1:3, 

    if abs(rotM(r,c))>m, m=abs(rotM(r,c)); rm=r; cm=c; end; % record max 

  end; end; 

  if rm~=cm, % swap cols if not on diagonal 

    t=rotM(:,cm); rotM(:,cm)=rotM(:,rm); rotM(:,rm)=t; 

    t=gain(cm); gain(cm)=gain(rm); gain(rm)=t; 

  end; % largest now in the diagonal, in row rm 

   

  % do the same on remaining 2x2 matrix 

  switch rm, case 1, i=[2 3]; case 2, i=[1 3]; case 3, i=[1 2]; end; 

  m=0; rm=0; cm=0; 

  for r=1:2, for c=1:2, 

    if abs(rotM(i(r),i(c)))>m, m=abs(rotM(i(r),i(c))); rm=i(r); cm=i(c); end; 

  end; end; 

  if rm~=cm, % swap cols if not on diagonal 

    t=rotM(:,cm); rotM(:,cm)=rotM(:,rm); rotM(:,rm)=t; 

    t=gain(cm); gain(cm)=gain(rm); gain(rm)=t; 

  end; 

   

  % neg cols to make it positive along diagonal 

  if rotM(1,1)<0, rotM(:,1)=-rotM(:,1); end; 

  if rotM(2,2)<0, rotM(:,2)=-rotM(:,2); end; 

  if rotM(3,3)<0, rotM(:,3)=-rotM(:,3); end; 

end 

Test code and sample output 

[ofs,gain,rotM]=ellipsoid_fit([X Y Z]); 

[gain,rotM]=refine_3D_fit(gain,rotM); % optional refinement 

 

XC=X-ofs(1); YC=Y-ofs(2); ZC=Z-ofs(3); % translate to (0,0,0) 

XYZC=[XC,YC,ZC]*rotM; % rotate to XYZ axes 

refr = 500; % reference radius 

XC=XYZC(:,1)/gain(1)*refr;  

YC=XYZC(:,2)/gain(2)*refr;  

ZC=XYZC(:,3)/gain(3)*refr; % scale to sphere 

 

figure;  

subplot(2,2,1); hold on; plot(XC,YC,'ro'); plot(X,Y,'kx');  

xlabel('X'); ylabel('Y'); axis equal; grid on; 

subplot(2,2,2); hold on; plot(ZC,YC,'go'); plot(Z,Y,'kx');  

xlabel('Z'); ylabel('Y'); axis equal; grid on;  
subplot(2,2,3); hold on; plot(XC,ZC,'bo'); plot(X,Z,'kx');  

xlabel('X'); ylabel('Z'); axis equal; grid on; 
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Support material 

Related design support material 

BlueMicrosystem1, Bluetooth low energy and sensors software expansion for STM32Cube 

Open.MEMS, MotionFX, Real-time motion-sensor data fusion software expansion for STM32Cube 

Documentation 

Application note, AN4508, Parameters and calibration of a low-g 3-axis accelerometer  

Application note, AN4615, Fusion and compass calibration APIs for the STM32 Nucleo with  

the X-NUCLEO-IKS01A1 sensors expansion board 

Desing tip, DT0053, 6-point tumble sensor calibration 

Revision history 

Date Version Changes 

09-Feb-2016 1 Initial release 

26-Aug-2018  2 Updated equations, added Matlab code 

29-Oct-2018 3 Added paragraph on rotation matrix refinement for optimal 
data compensation 
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